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1. Introduction

The interplay of capital, consumption, and factor prices, as well as the
evaluation of their volatility, is a recurrent issue in financial markets that
influences several activities, including financial derivatives, international
commerce, exchange rate fluctuations, and cross-border investments. In
2022, geostrategic unpredictability and the persistence of the pandemic will
increase the negative effect of external shocks on the economic externalities.
And financial risk avoidance requires an understanding of how to anticipate
potential shocks and evaluate the horizon over which they stabilize. The
purpose of this paper is to employ discrete state space techniques to solve
a dynamic general equilibrium (DGE) model in economics. Since the Ramsey
model is a workhorse example of a DGE model, we use it to illustrate our
approach. We choose a grid of capital investments for each period, establish
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the starting value of the value function, create an iterative loop to compute
the new value using interpolation, and define the selection criteria and stop
conditions. Finally, we model transient shocks to total factor productivity
(TFP) and identify the impulsive responses of consumption, capital, and
factor pricing.

The remainder of this paper is structured as follows: we begin by
reviewing the model and its implementation by prior researchers. We build
up the model according to Heer and Maussner (2011) and discuss the value
function iteration and linear interpolation. Then, we construct the model
calibration and the policy function that results. We assess the model using
impulsive reactions to a transient shock in total factor production, and we
finish with a discussion of the model’s limits and development
opportunities. We discover that discrete state space approaches can
represent the value function and policy function of our stochastic Ramsey
model properly. In terms of capital, consumption, and factor prices, we
discover that our model can replicate empirical data in broad strokes.

2. Literature Review

The traditional Ramsey growth model is an economic growth model that
has grown through numerous generations of modifications (Guerrini, 2010),
with an exogenous labor-augmenting technology advancement based on
Ramsey (1928)’s work and subsequently expanded by Cass (1965). Johnson
et al. (1993) discuss the trade-off between accuracy and time needed by
various solutions, while Heer and Maussani (2011) provide a complete
summary of the numerical approaches used to solve the Ramsey Model.
The enhanced Bayesian method is also used in value iteration algorithms
(Engel et al., 2003). For this research, we depend on one of the solutions
offered by Heer and Maussner (2011), considering it an adequate resource
for our theoretical explanation and optimization technique.

Modern scholars have studied at the junction of computational
economics and macroeconomic theory to solve this stochastic model. The
value function iteration is often used to evaluate the precision of numerical
algorithms (Taylor & Uhlig, 1990). The optimum fiscal policy technique
locates the function around zero such that quadratic convergence may be
attained (Puterman & Brumelle, 1979); Zhu (1992) describes this method in
detail. The dynamic planning approach is based on a very fine capital grid,
which seems to be superior to other algorithms in terms of speed, accuracy,
and ease of installation (Christiano & Fisher, 2000). Jiang and Powell (2015)
provide the optimum value function for three application domains: optimal
stopping, energy storage/allocation, and diabetic glycemic management.
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Roberto Chang(1998)’scredible monetary model gives a computer method
that converges to a set of time-consistent outcomes, which has influenced
interest rate policy (Campbell & Weber, 2021), food price fluctuations (Cato
& Chang, 2015), and sovereign debt research (Engel & Park, 2022).

Additionally, stochastic dynamic selection procedures and value
function iteration may simulate the risk of inter-temporal family financial
choices (Elbers et al., 2009). Erosa and Ventura (2002) construct a
threedimensional variables household interest optimization. This model
was applied to environmental economics by Kelly and Kolsta (2001), who
extend the classical model to incorporate the environment and pollutant
produced. Traeger (2014) change the Bellman model to the DICE model in
order to solve for an indefinite time horizon at arbitrary time steps and to
quantify the economic systemic consequences of climate change, energy
conservation, and emission reduction. Mirman et al. (2008) create a new
class of monotonic iterative techniques that provide a qualitative theory
for models of public policy, fiat currency, monopolistic competition,
externalizes, and also other nonconvexities of output intensity.

3. The Model

In 1928, Frank Ramsey presented the topic of how much of a nation’s
revenue it should be saving (Heer and Maussner, 2011). Since then, a number
of economists have been motivated to focus their research on the macro
economy by means of dynamic optimization issues (Becker et al., 1989). To

start, we instantiate our Cobb-Douglas type creation function y, at time ¢,
which is as follows:

Yy = f(Kt)
f(sz K¢ (1)

In this scenario, “A” refers to any external factor that boosts overall
production, such as the advancement of technology. This idea of technical
advancement, which is rather general and nebulous, does not apply to one
particular technology in particular. Calculations may be made to determine
the pace of technical advancement during a certain long-term historical
period by comparing it to the natural growth rate of the average production

throughout that time period. The invested capital K, is employed to produce

output; as a result, the capital is used up and depreciated, bringing the
total amount of (1-8) K, in the next period. The output is either used for

consumption C,,or put back into production as an investment K. This is
our budget constraint.
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yt + (1_5) Kt = Ct + Kt+1 (2)

The utility u(C,) of the agent at time ¢ is determined by consumption

using an isoelastic (CES) function that is concave and growing in C(Benhabib
and Rustichini, 1994):

ct7-1
U(Ct) = :tl_

— >0 (3)

But this involves choosing C at each instant of time ratherthan choosing
a finite set of variables, as in the standard maximization problems. The
household actually chooses C at eachpoint in time. In other words, it chooses
infinite C,. By picking the consumption route of, the family works toward
the goal of maximizing the lifetime utility within the confines of the
economy’s resource restriction. On the other hand, this requires picking C
at every single moment in time as opposed to picking a limited number of
variables, as is done in the conventional maximizing issues. In practice, the
family always goes with option C at any given pointin time. In other words,
it opts for an endless amount of C,.

maxU, = iﬂ‘*lu(ct).ﬁ € (0,1) (4)

which is contingent upon the budget limitation outlined in the previous
Equation (2) and necessitates that at any given time ¢,

C.>0K,;20 )

3.1. Dynamics and Equilibrium

The Euler equation encapsulates the characteristics of the solution to the
deterministic Ramsey problem:

u'(f(K)-Kia)
U(f(Kip) = Ki.)

In order to provide a concise explanation of the dynamics shown by the
Ramsey model, we make use of the approach represented by the phase
diagram in Figure 1. In order to maintain the readability of this report, we
will forgo going into detail about the Euler equation and will instead
concentrate on the ramifications of this equation as shown by our phase
diagram.

_ﬂf '(Kt+1) =0 (6)

Because there is a finite amount of resources, the capital stock K in the
dynamic Ramsey model has a limit, which is an important aspect of the
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Figure 1: Phase Diagram of the Infinite Horizon Ramsey Model

model. If Kis more than a certain value g, then the output that it generates
will be less than the production that is required to keep K at its present
level, even if consumption is reduced to zero; this will result in a decrease
in capital level in the subsequent instance.

The graphic provides a representation of the highest limit of our capital
stock g, which is visible to us. The point is located at the end of the curve
that represents the amount of consumption necessary to keep a certain level

of capital at its current level. It represents C such that K, =K, . At that point,
it reaches its maximal consumption K. Despite the evident advantages,

the system does not achieve its equilibrium at K_but rather a bit to the left
of K ,at K. At K, the level of consumption does not go up since the marginal
product of capital fK"=1/4is constant. As a result, the system arrives at
K’, C' when it has reached its stationary equilibrium .

We are also able to demonstrate that the only possible time route of
consumption is on the curve that is represented by the saddle path. This is
the case for any given quantity of beginning capital. For values of k < k",
consumption will adjust itself to a level that allows capital to grow until it
reaches K. Ifk » k", the system will again converge to the stationary
equilibrium following the saddle path. Let us suppose that there is a policy
function h(K,) that can be thought of as a decision rule and that has the
following relationship between the capital stock at each instant and the
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optimum consumption. During this experiment, we will do our best to
estimate this policy function using numbers.

C, = Af(K)-h(K,) (7)

3.2.Stochastic Total Factor Productivity

The random variable in this DGE originates from the total productivity
factor, and we define A as a totally exogenous shock that is controlled by a
stationary stochastic process. The total productivity factor is where the
random variable comes from (Carlson et al., 2012). In particular, logA
changes according to a process known as AR(1), which is based on the
benchmark model described in Heer and Maussner (2011):

Consequently, the total factor productivity is unknown, and its divergence
from unity affects total output. If A is greater than 1, production would
increase, leading to a rise in total consumption and capital expenditures in
the subsequent period.Similarly, if A <I, production would decrease, leading
to decreased consumption and investment in the next period.The stationary
equilibrium K" and C would be different for different levels of A. In fact,
given initial values A, and K, nowwe have an expected value of utility from
future periods which needs to be maximized by choosing the optimal level
ofinitial consumption C,, or next-period investment K, ..

max E;[>- 5'u(C,)] ®)

Therefore, we have

Kt+1+ct < Af(Kt)+(1_5)Kt
0<C 9)
0<K

t+1

We use the method ofTauchen (1986) to derive a matrix of transition
probabilities of A from one value to anotherdenoted byso that the solution
concepts identified in the next section can be applied effectively.

4. Value Function Iteration and Linear Interpolation

To find the policy function we require a recursive formulation of the Ramsey
problem. To do so we must assume that, given A and an initial capital
stock K, we already know the optimal time path of capital (and therefore
consumption). This series of optimal capital investments is denoted by

(Ko)is = (K[, K3,...) . Over an infinite lifetime, the utility fromconsumption

by following this optimal path is given by a value function v(K,):
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V(Ko) = maxu(f (K)— K})+ 3 Bu(f(K') - K.y)

Changing notation slightly, in the stochastic case at any instant for a
given level of TFP A and capital K, we can find thenext period
investmentusing the value function:

(K, A) = max u(A K,K')+ SEIV(K', Z') | Z]

where u is the current period utility of consumption C = Zzf (K)+(1-5)K -K".

We can further adapt the equation above to our model specifications to
obtain the Bellman equation:

(AK” +(1-8)K — K"} -1
1-7

V(K. A) = max +4Y Pv(K) (10)

We begin by choosing an error tolerance n. Next we discretize the state
space by constructing a grid for capital: K= K, K, K,,..., K and the initial
guess for the value function’s choice of K’ is that K" = 0. We then iterate
over the valuefunction, penalizing negative values of K. We recognize
convergence when the K’ values stop changing for subsequent iterations.
Since the technique that was used to derive the value function V alliteratively
from the Bellman equation can be found clearly defined in Heer and
Maussner (2011), it is not particularly productive to try to duplicate the
algorithm that was utilized. In light of the fact that the discrete values that
are supplied in the grid are insufficient, we interpolated a policy function
at each step by making use of the grid points that were accessible, and then
we updated the subsequent iterations appropriately. As a result, the values
of K’ that we converged upon can be different from the ones that were
picked for the original grid.

4.1.Model Calibration

In light of the fact that model calibration is essential to the precision and
effectiveness of our algorithm, we consulted the relevant research in order
to choose estimates of model parameters that have been previously
validated. Although many macroeconomic experts feel that the capital share
is somewhere between 0.3 and 0.4 (Auerbach, 1979), the question is still
contentious due to the possibility that this ratio may vary in the long term.
When it comes to the subjective discounted factor known as B, the value is
often either 0.9 or 0.95 in the majority of macroeconomic models. The annual
depreciation of capital is estimated at 10 percent by the majority of
economists (Nadiri and Prucha, 1996). It is not immediately clear how to



168 Journal of Quantitative Finance and Economics. 2022, 4, 2

estimate the value of the CRRA parameter (Dacy and Hasanov, 2011).
Following a process of trial and error, we have determined that the
parameter values that Heer and Maussner (2011)used are trustworthy, and
therefore we set to a =0.27, $ =0.994, 6 =0.011, 1 =2, p =0.90 and o = 0.0072.

Since the exogenous shock A follows a stationary stochastic process,
expectations and probabilities should be takeninto account. We denote A
as a gx1 vector representing possible realizations. And we also denote P =
(p;) as a gxq matrix, whose row j and column i element is the probability of
transitioning to state j from state i. We use themethod by Tauchen (1986) to
derive the values of A as well as transition probabilities. We compute a
probability matrix of:

=( 0.01089 0.97821 0.01089

11
6.6e™* 0.03322 0.96677 (11)

{0.96677 0.03322 6.6e ™ J
P=

The whole expected probability of total factor productivity (TFP) next
period always equal to 1, which is unaffected by thelevel of current
productivity. We use 3 different values of the TFP shock: negative shock,
no shock and positive shock,corresponding with the factor of:

. [0.96696
A=|1.00000
1.03304 (12)

In a broader sense, there is the possibility that A” might take on any
number of discrete values, each of which would have a distinct probability.
In this instance, A" complies with the specifications of a normal distribution.
Because of the manner that we have defined the stochastic element, the
distribution of A’ is not reliant on the distribution of A. In other words, the
effects of this completely external shock, denoted by the letter A, are only
transient(Carlson et al., 2012).

4.2. Choice of Grid Points and Initializing Algorithm

The dynamics of the Ramsey model require that the optimal sequence of
capital stocks monotonically approaches the stationary solution
K'determined from the condition gf'(K") =1. When the shock to A is

unknown as in the stochastic case, we make an educated guess to find a
stationary value that would be reached if there is no shock to the system if

A =1. This we find K" from the equation 1= (1-s+ f'(K")) which yields

K =(a/@/ p-@1-5))"" . We place our grid points in the region [0.8K,
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1.2K’]x[0.96696, 1.00000, 1.03304]. We start with 4 grid points between [0.8K,
1.2K’] and use the results to interpolate to 4* 2 points on the second iteration,
4* 22 points on the third iteration and so forth until the seventh and final

interpolation round resulting in gx 26 =256 grid points.

At the beginning, we gave the value function a value of 0 to represent
it. To calculate the value function on a grid consisting of 4 points, we used
the iteration technique of value function computation. According to Heer
and Maussner (2011)’s recommendation, we made use of this coarse grid
in order to speed up the algorithm. Through a series of iterative processes,
we brought the grid’s point count up to 256. At each stage, we started with
the previously determined value function, computed further estimates of
the value function using linear interpolation, and then utilized the result as
an initial prediction for the value function. We continued the experiment
until we obtained a tolerance for error of 0.00005, which needed a maximum
of 1000 iterations each step, dropping by around 100 iterations with each
step until we converged on the last round after approximately 200 iterations.
The total amount of time that the experiment was conducted was 2 hours
46 minutes. We tried out a variety of model calibrations, some of which
were effective in reducing the amount of time required for the run (for
example, when we used o = 0.33, 1 = 0.9 and & = 0.1, the amount of time
required for the run was significantly decreased). However, in order to
keep the results comparable, we decided to utilize the values that were
found in the research.

5. The Result

We begin by observing the policy function in Figures 2. In Figure 2(a) we
plot the policy function for each value of K, we plot the corresponding K, ..
Although it looks like a 45 degree line, it is not. We note from the policy
function thatwhen K, =11.009 for A =1, K, , = 11.447 whereas when K, =
55.047, K, , =54.879 . Thus we go from accumulatingcapital stock to shedding
it. Because of this, there is now an extremely strong possibility that the
stationary solution will be included into the grid. In addition, we may see
consumption at Figure 2(b).

We are going to calculate the impulse responses of our model so that
we can compare them to the responses that are predicted based on empirical
data.We will simulate a one period shock to the total factor productivity A
and track how consumption C, capital K’, and factor prices f'(K)=AzK**
co-move with contractionary and expansionary shocks. Impulse responses
are deviationsof the model’s variables from their stationary solution. The
policy function calculated in our model gave us the saddle pathto the
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Figure 2: The Policy Function. In Figure 2(a), K’ is plotted against K and a
constantly growing function is shown. We then exhibit C vs K in Figure 2 (b). In
Figure 2(c), we examine the lifetime value functions for each level of beginning

K, displayed for the three potential stochastic values of the TPF A.
As anticipated, greater values of A result in greater lifetime values

stationary solution for each level of A. We need to verify what happens to
a system when it gets an external shock that brings A to its higher level
(1.03304) or its lower level (0.96696), comparing it to the stationary solution
for A=1.

The evaluation of the correctness of our policy function may benefit
greatly from the usage of impulsive replies. Impulse reactions to a rapid
and brief rise in total factor production may be shown in Figure 3 thanks to
a vector auto-regressive (VAR) model that was calculated from actual data
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by Heer and Maussner (2011). We are seeing knee-jerk reactions in terms of
production, consumption, investment, and hours worked. Because logA
has a significant degree of autocorrelation (they also use p = 0.90), A, is
consistently greater than A =1 during the numerous periods. People’s real
wages go up as a result of increased total factor productivity, which causes
them to spend more money and put in longer hours at work at the expense
of their leisure time. During the time period in which the shock is detected,
greater production y(K) and increased labor supply both contribute to rises
in factor prices. Together, these two factors raise productivity and increase
the supply of workers. The family wishes to maintain a consistent level of
consumption over time and is planning on higher interest rates (factor
prices) in the future because they believe that the marginal product of capital
has improved in a manner that is both long-term and stable. This, in turn,
results in an increase in investment throughout the subsequent era. Because
of the incremental but steady growth of future capital, real wages will
continue to be relatively high even after working hours have been reduced
to their traditional levels.

Output Consumplion

=0.006 0002 0.010 0018
0.010 0018
o [———————————————

[+] 4 8 12 18 20 24 28 2 cl‘ 4 8 12 1% 20 24 L] 32
Period Period
Investment Hours

o L

g g

= =

2 2

3l i 2

| g

= = eeees

S0 4 8 12 16 20 24 28 32 S0 4 ] 12 16 20 24 28 32
Period Period

Figure 3: Impulse Responses from Estimated VAR

Since we have presumed that A is an entirely exogenous process, we do
not utilize a VAR process to describe it when we plot our impulse responses.
This is due to the fact that A is driven by a set of probabilities that are also
exogenous. At time t = 5, we cause a shock to the value of A, and at time t =
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6, we reset the value of A to 1 (the initial value). Since this is not the same as
the VAR model described before, we may anticipate that the consequences
of the shock will have a shorter-lasting impact in our model compared to
the actual data. Despite this, we anticipate that the broad trend of either
rise or reduction will be correctly identified. Furthermore, we anticipate
that any impacts on the accumulation of capital will be more long-lasting
than the effects on the other variables.

5.1.Impulse Response of Capital

In Figure 4(a), at t = 5, we witness the impulsive response of capital
accumulation to a contractionary shock to A, in which A goes from 1 to
0.96696. Att = 6, A returns to 1. We compare it to the values for capital
stock given by our value function for A = 1. These values correspond to the
y-axis level 0. Despite the fact that A returns to its original value in the very
next period, itis evident that the contraction in A causes an immediate and
long-lasting reduction in capital stock. If the shock in A had been more
chronic, the contraction in capital would have been more protracted as well.
It takes more than 400 time periods for our model to ultimately disappear,
indicating that it is plausible.Similarly in Figure 4(b) we observe the effect
of an expansive shock to A where it goes from 1 to 1.03304 at t = 5. Areturns
to1 att=6. In concurrence with the increase in output seen in the Figure 3,
we find a persistent increase in capitalaccumulation as well. Consequently,
we may infer that our model well captures the impulsive reactions of capital
to a shock in total factor productivity.

Impulse response of Capital to Contractive TFP shock

—

-0.01 H /

-0.02 ’
. //

i

i

-0.03 - ¢

Impulse response of Capital - k
~

-0.04 | /

-0.05
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Impulse response of Capltal to Expansive TFP shock
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Figure 4. Impulse Response of Capital. We can see a contractionary shock to
TFP shown in Figure (4a), which results in a decrease in production and, as a
result, future capital accumulation. We see an expansive shock to TFP in Figure
4(b), which boosts output and persistently increases future capital accumulation
permanently even after working hours return to normal. This is due to the
fact that the increase in future capital is relatively small, but it remains
even after the working hours return to normal

5.2. Impulse Response of Consumption

In Figure 5(a) we observe the impulse response of consumption to a
contractionary shock to A where it goes from 1 to 0.96696at t = 5. A returns
to 1l att=6. We compare it to the values of consumption generated by our
value function for A = 1.The level 0 on the y-axis represents these values.We
can observe that the contraction in A immediately leads to a contraction in
consumption, which swiftly fades away when A returns to its original level
in the subsequent period. If the shock in A had been more chronic,
consumption would have contracted much more persistently. However,
the reduction of consumption is less permanent than that of capital
accumulation. This confirms the robustness of our concept since it is
consistent with Ramsey model predictions.

Similarly in Figure 5(b) we observe the effect of an expansive shock to
A where it goes from 1to 1.03304 at t =5.A returns to 1 at t = 6. In agreement
with the increase in output seen in the Figure 3, we find a temporary increase
inconsumption as well. As a result, we are able to reach the conclusion that
our model has been effective in capturing the impulsive reactions of
household consumption in response to a shock in total factor production.
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Figure 5: Impulse Response of Consumption.In Figure 5(a), we observe a
contractionary shock to TFP that reduces output and therefore leads to a
temporary dip in household consumption. In Figure 5(b), we observe
an expansive shock to TFP shock that boosts output and
consumption, although temporarily
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Figure 6. Impulse Response of Factor Prices. In Figure 6(a), the effects of two
shocks are depicted: a contractionary shock to A, which depresses factor prices,
and an unanticipated return to normality, which causes interest rates to increase

to make up for the preceding period’s under-investment. In Figure 6(b), the

opposite effect is shown, in which the marginal product of capital increases with
productivity but falls momentarily when the system rapidly returns to normal
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5.3.Impulse Response of Factor Prices

The factor prices in our model are unconstrained by any smoothing
parameters and long-term considerations and thereforeaccurately reflect
the unexpectedness of the series of shocks - one shock at t =5, and the other
sudden movement back to status quo at t = 6.

Figure 6(a) demonstrates that when TFP suddenly declines, the marginal
product of capital falls and investment and consumption drop. In the very
following period, however, when TFP returns to normal due of a period of
under-investment, the marginal product of capital is now greater than its
stationary values had the economy never experienced the shock. However,
the effect wears off fairly soon. Figure 6(b) depicts the inverse of the
preceding motion. When total factor productivity (TFP) rises, the marginal
product of capital rises, leading to over-investment. This tendency is
reversed in the very following period, when TFP returns to normal and the
marginal product of capital is lower than it would have been if the
aforementioned shock had not occurred. However, the impact is temporary
in nature.

6. Conclusion

Because none of the values ofderived by the value function iteration surpass
the upper limit of our grid point, a quick analysis of the policy function
would indicate that it is not confined by the discrete state space.We areable
to observe an increasing trend forgiven a small, as well as a decreasing
trend for large values of initial capitalstock. The value function and policy
function of our stochastic Ramsey model may be effectively captured by
procedures that take place in discrete state spaces. In general, our model is
able to provide results that are consistent with the actual data in broad
strokes. Both the theoretical model and the data show that shocks to A
cause capital, consumption, and factor prices to move together in the way
that was expected by the model. When we simulate our reactions, we do
not represent TFP as a VAR process, which results in a reduction in the
shocks” persistence. Despite this, the model is able to accurately predict
both the overarching trend of the shocks as well as their relative persistence
across the variables that were investigated. There are many different ways
that things may be improved.If we make a solid initial estimate for the
value function, we will be able to significantly reduce the amount of time it
takes for our algorithm to complete its tasks, such as the one used by Heer
and Maussner (2011): . In addition, we may increase the accuracy of our
results by using a less coarse starting grid in conjunction with cubic
interpolation. Despite this, the performance of our current model is
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satisfactory considering the limitations imposed by time and computing
resources.

References

Auerbach, A. J. (1979). Share valuation and corporate equity policy. Journal of
PublicEconomics, 11(3),291-305. https://doi.org/10.1016/0047-2727(79)90025-2

Becker, R. A.,Boyd, J. H., II, & Sung, B. Y. (1989). Recursive utility and optimal capital
accumulation. I. Existence. Journal of Economic Theory, 47(1), 76-100. https://doi.org/
10.1016/0022-0531(89)90104-x

Benhabib, ., & Rustichini, A. (1994). A note on a new class of solutions to dynamic
programming problems arising in economic growth. Journal of Economic Dynamics
& Control, 18(3-4), 807-813. https://doi.org/10.1016/0165-1889(94)90032-9

Campbell, J. R., & Weber, J. P. (2021). Discretion rather than rules: Equilibrium
uniqueness and forward guidance with inconsistent optimal plans. Review of
Economic Dynamics, 41,243-254. https://doi.org/10.1016/j.red.2020.11.005

Carlson, D. A, Haurie, A. B, & Leizarowitz, A. (2012). Infinite horizon optimal control:
deterministic and stochastic systems. Springer Science & Business Media. https://
link.springer.com/book/10.1007/978-3-642-76755-5

Cass, D. (1965). Optimum growth in an aggregative model of capital accumulation. The
Review of Economic Studies, 32(3), 233. https://doi.org/10.2307/2295827

Catdo, L. A. V., & Chang, R. (2015). World food prices and monetary policy. Journal of
Monetary Economics, 75,69-88. https://doi.org/10.1016/].jmoneco.2014.12.010

Chang, R. (1998). Credible monetary policy in an infinite horizon model: Recursive
approaches. Journal of Economic Theory, 81(2), 431-461. https://doi.org/10.1006/
jeth.1998.2395

Christiano, L. J., & Fisher, J. D. M. (2000). Algorithms for solving dynamic models
with occasionally binding constraints. Journal of Economic Dynamics & Control, 24(8),
1179-1232. https://doi.org/10.1016/50165-1889(99)00016-0

Dacy, D., & Hasanov, F. (2011). A finance approach to estimating consumption
parameters. Economic Inquiry, 49(1), 122-154. https://doi.org/10.1111/j.1465-
7295.2010.00289.x

Elbers, C., Gunning, ]. W., & Vigh, M. (2009). Investment under risk with discrete and
continuous assets: Solution and estimation. SSRN Electronic Journal. https://doi.org/
10.2139/ssrn.1422449

Engel, C., & Park, ]. (2022). Debauchery and original sin: The currency composition of
sovereign debt. Journal of the European Economic Association, 20(3), 1095-1144. https:/
/doi.org/10.1093/jeea/jvac009

Erosa, A., & Ventura, G. (2002). On inflation as a regressive consumption tax. Journal of
Monetary Economics, 49(4), 761-795. https.//doi.org/10.1016/50304-3932(02)00115-0

Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets Bellman: The Gaussian process
approach to temporal difference learning. Proceedings of the 20th International
Conference on Machine Learning (ICML-03), 154-161. https://www.aaai.org/Papers/
ICML/2003/ICML03-023.pdf



178 Journal of Quantitative Finance and Economics. 2022, 4, 2

Guerrini, L. (2010). A closed-form solution to the Ramsey model with logistic population
growth. Economic Modelling, 27(5), 1178-1182.https://doi.org/10.1016/
j.econmod.2010.03.002

Heer, B., & Maussner, A. (2011). Dynamic general equilibrium modeling: Computational
methods and applications (2nd ed.). Springer. https://link.springer.com/book/10.1007/
978-3-540-85685-6

Jiang, D. R., & Powell, W. B. (2015). An approximate dynamic programming algorithm
for monotone value functions. Operations Research, 63(6), 1489-1511. https://doi.org/
10.1287/opre.2015.1425

Johnson, S. A., Stedinger, J. R., Shoemaker, C. A., Li, Y., & Tejada-Guibert, J. A. (1993).
Numerical solution of continuous-state dynamic programs using linear and spline
interpolation. Operations Research, 41(3), 484-500. https://doi.org/10.1287/
opre.41.3.484

Kelly, D. L., & Kolstad, C. D. (2001). Solving infinite horizon growth models with an
environmental sector. Computational Economics, 18(2), 217-231. https://
link.springer.com/article/10.1023/A:1021018417052

Mirman, L. J., Morand, O. F., & Reffett, K. L. (2008). A qualitative approach to Markovian
equilibrium in infinite horizon economies with capital. Journal of Economic
Theory, 139(1), 75-98. https://doi.org/10.1016/;.jet.2007.05.009

Nadiri, M. L, & Prucha, I. R. (1996). Estimation of the depreciation rate of physical and
R&D capital in the U.S. Total manufacturing sector. Economic Inquiry, 34(1), 43—
56. https://doi.org/10.1111/j.1465-7295.1996.tb01363.x

Puterman, M. L., & Brumelle, S. L. (1979). On the convergence of policy iteration in
stationary dynamic programming. Mathematics of Operations Research, 4(1), 60—-69.
https://doi.org/10.1287 /moor.4.1.60

Ramsey, F. P. (1928). A mathematical theory of saving. Economic Journal (London,
England), 38(152), 543. https://doi.org/10.2307/2224098

Tauchen, G. (1986). Finite state markov-chain approximations to univariate and vector
autoregressions. Economics Letters, 20(2), 177-181. https://doi.org/10.1016/0165-
1765(86)90168-0

Taylor, J. B., & Uhlig, H. (1990). Solving nonlinear stochastic growth models: A
comparison of alternative solution methods. Journal of Business & Economic Statistics:
A Publication of the American Statistical Association, 8(1), 1-17. https://doi.org/10.1080/
07350015.1990.10509766

Traeger, C. P. (2014). A 4-stated DICE: Quantitatively addressing uncertainty effects
in climate change. Environmental & Resource Economics, 59(1), 1-37. https://doi.org/
10.1007/s10640-014-9776-x

Zhu, X. (1992). Optimal fiscal policy in a stochastic growth model. Journal of Economic
Theory, 58(2), 250-289. https://doi.org/10.1016/0022-0531(92)90055-m



